
 Neutron: Modular Rolling-Governed Applications System
 Internetbase.org - Anvil - Vesselin Tsukeff
 ICDevs.org - Origyn.ch - Austin Fatheree

 Abstract. Rolling governance will allow a web3 application to upgrade itself independently,
 without the need to rely on other services except the ones provided by the Internet Computer
 Protocol 1 . DAOs 2 provide enormous benefits when governing applications and services, but
 also have downsides. DAO-governed registries and services 3 that are connecting projects
 inside the ecosystem, but create for-profit gates that sometimes enforce premature
 standards that hinder innovation, and unnecessarily take control from users and ecosystem
 developers. In such a setting developers need to accept the architecture and standards
 imposed on them, seek permission from other organizations, and restrict themselves to what
 is technically allowed while joining a sub-ecosystem that is steering the wheel in an unknown
 direction.

 The Internet Computer provides us with an open-to-everyone platform where everyone can
 deploy their own software, and create their own ledgers, architectures, standards, and
 DAOs. It’s truly a world computer. But the freedom it provides is also holding us back when it
 comes to creating a network effect. We are proposing a solution that will improve the
 networking effect in a more decentralized and open manner that will not restrict the freedom
 of users and ecosystem developers. A solution that befits the Internet Computer.

 The Neutron is a user-deployed canister 5 /smart contract. It's exclusively under the
 proprietor's control and is strategically designed to leverage the progressive advantages of
 the 'Snowball effect'. It has a web interface (frontend) with cryptographically secured
 contents 5 , backend functions, and heartbeat 7 . This paradigm can only be accomplished
 securely on the Internet Computer. Its web interface allows users to upgrade it by choosing
 applications from an easy-to-use interface, or by adding them from an external URL. All
 applications are fetched assembled, and compiled inside it, then the new bigger Neutron is
 installed. The Neutron only relies on itself to upgrade and evolve without restriction. The
 applications it assembles can add functions to its backend and interfaces to its frontend.
 Among other ways, this can be achieved using Motoko 4 , it is lightweight and allows frontends
 to compile the applications into one canister, while also providing a certain degree of module
 isolation.

 This rolling governance will allow developers to create applications that allow users to
 transform and grow their Neutron into anything they like. These applications can add
 functionality such as an on-chain wallet, a multi-sig wallet, a DAO, peer-to-peer discovery,
 two-factor authentication/signing, trading bots, identity providers, file storage, and app
 stores. It starts with enough to facilitate the mechanism allowing self-upgrades and what
 happens after that is up to the Neutron owner and community of developers that offer
 applications. This will allow all projects to provide applications that integrate their unique

 innovative services & applications. It will allow them to collaborate at a synchronous 1 level
 for the first time. Such a wallet can hold all possible crypto assets from any standards and
 any chains with Threshold ECDSA 9 . It can provide an identity 11 , similar to Internet Identity 12 .
 It can store private data with VETKeys 13 . It will be able to do arbitrary computation on
 encrypted data 14

 Until now we have only had user canisters that aren’t governed by the users themselves, but
 a DAO 10 (OpenChat, Hot Or Not, Ego). They require the DAO to approve any changes, thus
 increasing their DAO’s value. Instead of being a restrictive gate, DAOs will be able to put a
 green checkmark that conveys their approval of a certain app to the end user. The Neutron
 paradigm allows us for the first time to allow users to govern their canisters, similar to how
 they already govern their personal computers - by adding and removing applications. Users
 are not all voting for a proposal that installs an application on all PCs globally. The Neutron
 paradigm allows the emergence of user-governed cryptographically secured operating
 systems.

 The Neutron system simplifies compliance with regulations such as GDPR, HIPAA, and
 others by granting users ownership and control over their data. Vendors can deliver
 approved code to user canisters for computation, ensuring transparency and traceability.
 Applications, in this setting, hold only pointers to data, which significantly reduces data
 duplication and potential breaches. Furthermore, user ownership of data means they can
 delete their information at will, enhancing privacy and supporting regulatory requirements
 like 'the right to be forgotten' under GDPR. This decentralized data governance model
 provides a compliance-friendly framework for developers while preserving user privacy and
 control.

 The open-source, algorithmic nature of the Neutron system allows vendors to run data
 summaries privately without exposing user data. Vetted and open-source roll-up canisters
 can distribute code to user data wallets, processing data in a way that maintains user privacy
 while still allowing vendors to extract valuable insights. These canisters execute
 computations directly on user data without moving or revealing the data itself, effectively
 implementing a "map-reduce" operation that enhances vendors' service offerings. The
 results are anonymized or aggregated to ensure no individual user's data can be identified.
 This maintains user privacy while enabling vendors to utilize the data for improving their
 services.

 In the context of a client dApp retrieving data for multiple users, like a social graph where
 posts are held in user-owned canisters, the parallel nature of the Internet Computer's
 architecture becomes even more beneficial.

 From the dApp's perspective, when a data retrieval request is made, it is broadcasted to all
 relevant user canisters simultaneously. Each canister independently processes the request
 and returns the relevant data (e.g., user posts in this case).

 Since the retrieval operations are performed in parallel across the network, the total time to
 gather all necessary data is significantly reduced compared to sequential retrieval. This
 makes the process efficient, fast, and scalable, allowing the dApp to serve complex,
 multi-user requests effectively.

 By leveraging the inherent parallelism of the Internet Computer, client dApps can optimally
 utilize resources, maintain swift performance, and ensure a responsive user experience,
 even with a large number of users or a high volume of data.

 From an economic perspective, this leaves projects to decide how much of the generated
 value, they want to share with others inside the user-owned Neutron and how much they
 want to keep inside their own canisters. If they share too much - they will not be able to
 capture enough value to raise funding to develop their ideas. If they share too little or nothing
 they won’t be able to effectively collaborate with other projects in the ecosystem.

 References:
 [1] Internet Computer Protocol https://internetcomputer.org/whitepaper.pdf
 [2] Decentralized Autonomous Organizations https://internetcomputer.org/sns
 [3] Such as DAB https://github.com/Psychedelic/dab and CAP https://github.com/Psychedelic/cap
 [4] Motoko https://internetcomputer.org/docs/current/motoko/main/motoko
 [5] Canister https://internetcomputer.org/docs/current/concepts/canisters-code
 [6] https://internetcomputer.org/how-it-works/smart-contracts-serve-the-web/
 [7] https://internetcomputer.org/docs/current/motoko/main/timers
 [8] https://internetcomputer.org/docs/current/motoko/main/actors-async
 [9] https://internetcomputer.org/how-it-works/chain-key-technology
 [10] OpenChat https://oc.app/whitepaper
 [10] Hot Or not
 https://hotornot.notion.site/hotornot/Hot-or-Not-Whitepaper-c539179e51f44867979f4372e4635f59
 [10] Ego https://forum.dfinity.org/t/proposal-of-personal-canister-framework-on-ic-ego/17899
 [11] https://internetcomputer.org/docs/current/references/ic-interface-spec#canister-signatures
 [12] https://internetcomputer.org/internet-identity
 [13] https://internetcomputer.org/docs/current/blog/features/vetkey-primer
 [14] https://www.zama.ai/

https://internetcomputer.org/whitepaper.pdf
https://internetcomputer.org/sns
https://github.com/Psychedelic/dab
https://github.com/Psychedelic/cap
https://internetcomputer.org/docs/current/motoko/main/motoko
https://internetcomputer.org/docs/current/concepts/canisters-code
https://internetcomputer.org/how-it-works/smart-contracts-serve-the-web/
https://internetcomputer.org/docs/current/motoko/main/timers
https://internetcomputer.org/docs/current/motoko/main/actors-async
https://internetcomputer.org/how-it-works/chain-key-technology
https://oc.app/whitepaper
https://hotornot.notion.site/hotornot/Hot-or-Not-Whitepaper-c539179e51f44867979f4372e4635f59
https://internetcomputer.org/docs/current/references/ic-interface-spec#canister-signatures
https://internetcomputer.org/internet-identity
https://internetcomputer.org/docs/current/blog/features/vetkey-primer
https://www.zama.ai/

